3.2.39 \(\int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx\) [139]

3.2.39.1 Optimal result
3.2.39.2 Mathematica [A] (verified)
3.2.39.3 Rubi [A] (verified)
3.2.39.4 Maple [C] (verified)
3.2.39.5 Fricas [C] (verification not implemented)
3.2.39.6 Sympy [F(-1)]
3.2.39.7 Maxima [F]
3.2.39.8 Giac [F(-1)]
3.2.39.9 Mupad [F(-1)]

3.2.39.1 Optimal result

Integrand size = 42, antiderivative size = 176 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}}+\frac {2 (g \cos (e+f x))^{5/2}}{a f g \sqrt {a+a \sin (e+f x)} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{a c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

output
-2*(g*cos(f*x+e))^(5/2)/f/g/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2)+ 
2*(g*cos(f*x+e))^(5/2)/a/f/g/(c-c*sin(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(1/2) 
-2*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticE(sin(1/2*f*x 
+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/a/c/f/(a+a*sin(f*x+ 
e))^(1/2)/(c-c*sin(f*x+e))^(1/2)
 
3.2.39.2 Mathematica [A] (verified)

Time = 4.09 (sec) , antiderivative size = 92, normalized size of antiderivative = 0.52 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=-\frac {2 (g \cos (e+f x))^{5/2} \left (-\sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )+\sin (e+f x)\right )}{c f g (-1+\sin (e+f x)) (a (1+\sin (e+f x)))^{3/2} \sqrt {c-c \sin (e+f x)}} \]

input
Integrate[(g*Cos[e + f*x])^(3/2)/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e 
+ f*x])^(3/2)),x]
 
output
(-2*(g*Cos[e + f*x])^(5/2)*(-(Sqrt[Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2] 
) + Sin[e + f*x]))/(c*f*g*(-1 + Sin[e + f*x])*(a*(1 + Sin[e + f*x]))^(3/2) 
*Sqrt[c - c*Sin[e + f*x]])
 
3.2.39.3 Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.99, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3042, 3331, 3042, 3331, 3042, 3321, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(g \cos (e+f x))^{3/2}}{(a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(g \cos (e+f x))^{3/2}}{(a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}dx\)

\(\Big \downarrow \) 3331

\(\displaystyle \frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{a}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} (c-c \sin (e+f x))^{3/2}}dx}{a}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3331

\(\displaystyle \frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{c}}{a}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {\int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {\sin (e+f x) a+a} \sqrt {c-c \sin (e+f x)}}dx}{c}}{a}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3321

\(\displaystyle \frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \cos (e+f x) \int \sqrt {g \cos (e+f x)}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{a}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \cos (e+f x) \int \sqrt {g \sin \left (e+f x+\frac {\pi }{2}\right )}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{a}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3121

\(\displaystyle \frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\cos (e+f x)}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{a}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} \int \sqrt {\sin \left (e+f x+\frac {\pi }{2}\right )}dx}{c \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{a}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {2 (g \cos (e+f x))^{5/2}}{f g \sqrt {a \sin (e+f x)+a} (c-c \sin (e+f x))^{3/2}}-\frac {2 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{a}-\frac {2 (g \cos (e+f x))^{5/2}}{f g (a \sin (e+f x)+a)^{3/2} (c-c \sin (e+f x))^{3/2}}\)

input
Int[(g*Cos[e + f*x])^(3/2)/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x] 
)^(3/2)),x]
 
output
(-2*(g*Cos[e + f*x])^(5/2))/(f*g*(a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + 
 f*x])^(3/2)) + ((2*(g*Cos[e + f*x])^(5/2))/(f*g*Sqrt[a + a*Sin[e + f*x]]* 
(c - c*Sin[e + f*x])^(3/2)) - (2*g*Sqrt[Cos[e + f*x]]*Sqrt[g*Cos[e + f*x]] 
*EllipticE[(e + f*x)/2, 2])/(c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e 
 + f*x]]))/a
 

3.2.39.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 

rule 3321
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[g* 
(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]))   Int[(g 
*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ 
[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
 

rule 3331
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b* 
(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a* 
f*g*(2*m + p + 1))), x] + Simp[(m + n + p + 1)/(a*(2*m + p + 1))   Int[(g*C 
os[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] 
/; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - 
b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] &&  !LtQ[m, n, -1] && Integers 
Q[2*m, 2*n, 2*p]
 
3.2.39.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.71 (sec) , antiderivative size = 425, normalized size of antiderivative = 2.41

method result size
default \(-\frac {2 \left (i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \left (\cos ^{2}\left (f x +e \right )\right )-i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \left (\cos ^{2}\left (f x +e \right )\right )+2 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \cos \left (f x +e \right )-2 i \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right ) \cos \left (f x +e \right )+i \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, E\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right )-i \sqrt {\frac {\cos \left (f x +e \right )}{1+\cos \left (f x +e \right )}}\, \sqrt {\frac {1}{1+\cos \left (f x +e \right )}}\, F\left (i \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )\right ), i\right )-\sin \left (f x +e \right )\right ) \sqrt {g \cos \left (f x +e \right )}\, g}{f \left (1+\cos \left (f x +e \right )\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, a c}\) \(425\)
risch \(\text {Expression too large to display}\) \(1138\)

input
int((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x,m 
ethod=_RETURNVERBOSE)
 
output
-2/f*(I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*Ellipti 
cE(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+e)^2-I*(1/(1+cos(f*x+e)))^(1/2)*(c 
os(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*cos 
(f*x+e)^2+2*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*E 
llipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+e)-2*I*(1/(1+cos(f*x+e)))^(1 
/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)), 
I)*cos(f*x+e)+I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2) 
*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)-I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f* 
x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)-sin(f*x+ 
e))*(g*cos(f*x+e))^(1/2)*g/(1+cos(f*x+e))/(a*(1+sin(f*x+e)))^(1/2)/(-c*(si 
n(f*x+e)-1))^(1/2)/a/c
 
3.2.39.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 145, normalized size of antiderivative = 0.82 \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\frac {i \, \sqrt {2} \sqrt {a c g} g \cos \left (f x + e\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) - i \, \sqrt {2} \sqrt {a c g} g \cos \left (f x + e\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right ) + 2 \, \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} g \sin \left (f x + e\right )}{a^{2} c^{2} f \cos \left (f x + e\right )^{2}} \]

input
integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/ 
2),x, algorithm="fricas")
 
output
(I*sqrt(2)*sqrt(a*c*g)*g*cos(f*x + e)^2*weierstrassZeta(-4, 0, weierstrass 
PInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e))) - I*sqrt(2)*sqrt(a*c*g)*g* 
cos(f*x + e)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + 
 e) - I*sin(f*x + e))) + 2*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e) + a)*s 
qrt(-c*sin(f*x + e) + c)*g*sin(f*x + e))/(a^2*c^2*f*cos(f*x + e)^2)
 
3.2.39.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((g*cos(f*x+e))**(3/2)/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))** 
(3/2),x)
 
output
Timed out
 
3.2.39.7 Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/ 
2),x, algorithm="maxima")
 
output
integrate((g*cos(f*x + e))^(3/2)/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + 
 e) + c)^(3/2)), x)
 
3.2.39.8 Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate((g*cos(f*x+e))^(3/2)/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/ 
2),x, algorithm="giac")
 
output
Timed out
 
3.2.39.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

input
int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x) 
)^(3/2)),x)
 
output
int((g*cos(e + f*x))^(3/2)/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x) 
)^(3/2)), x)